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Abstract

The behavior of annular plates with clamped-clamped immovable boundary conditions subjected to axisymmetric
in-plane thermal loads is considered. The plate is modeled using a linear form of the von Karman plate theory and the
radial temperature distribution is determined from the steady-state heat conduction equation. A numerical shooting
method is used to calculate the mode shapes and natural frequencies and the influence of key thermal and geometric
parameters on the free vibrations and buckling of the annulus is investigated. Further, an approximate closed-form
expression for the natural frequencies is introduced and its validity is explored by comparing its results with those
obtained numerically. As a special case, the behavior of clamped thermally loaded circular plates is also investigated.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Plates are key components in many structural and machinery applications. Some examples include
turbines, tanks, automotive braking systems, and, more recently, microelectromechanical system (MEMS)
devices, such as sensors and micropumps. In many of these applications, the plates are subjected to thermal
loads, which may cause buckling and/or induce unexpected dynamic responses. In fact, as early as the
1920s, von Freudenreich (1925) experimentally investigated vibrations in steam turbine disks and matched
his results with the theory presented by Stodola (1924). As indicated in the review by Thornton (1993), the
thermal buckling of plates and shells has been the subject of much research in the past 50 some years.
However, the analysis of the dynamic responses of annular plates subjected to thermal loads has received
little attention.

In a series of papers, Mote (1965, 1966, 1967) investigated the influence of inducing thermal membrane
stresses in circular saws in an effort to increase their natural frequencies and hence, improve their stability.
Fedorov (1976) examined the linear thermostability problem of elastically clamped variable-stiffness
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Fig. 1. A schematic of (a) an annular plate and (b) a cross-sectional view illustrating a typical steady-state axisymmetric temperature
distribution.

annular plates under axisymmetric radial nonuniform thermal loads. He found that, in certain cases,
variations of the Young modulus and the Poisson ratio with temperature cannot be neglected. Irie and
Yamada (1978) investigated the linear free vibrations of elastically supported circular and annular plates,
with one edge exposed to an axisymmetric sinusoidal heat flux and the other edge thermally insulated.
More recently, the nonlinear free vibrations of isotropic and axisymmetric orthotropic annular plates
carrying concentric rigid masses and subject to thermal loads were investigated by Li et al. (2002). They
modeled the plates using the von Karman equations and assumed the nonlinear responses to be harmonic.
They then applied the Kantorovich averaging method and examined the nonlinear natural frequencies
and thermal buckling loads for hinged and clamped immovable boundary conditions. In all of the afore-
mentioned works, the temperature distribution was found to be a significant parameter affecting the free
response.

In this work, the free vibrations and buckling of annular plates with clamped-clamped immovable
boundary conditions subjected to axisymmetric in-plane thermal loads are analyzed (see Fig. 1). A linearized
version of the von Kdrman plate theory is used to model the behavior of the annular plates and explore the
influence of several thermal and geometric parameters on the system response. The natural frequencies and
mode shapes are calculated numerically by a shooting method. In addition, the method of strained
parameters is applied to determine an approximate closed-form expression for the natural frequencies. The
free vibrations and buckling of thermally loaded circular plates are also investigated as a special case.

2. Problem formulation

The linear undamped free vibrations of an annular plate under an axisymmetric thermal load are
governed by
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where

MT:E(X/% [?(m) —To]zdzzo (3)

h
2

and the biharmonic operator is given by
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Here, 7 and 0 are polar coordinates; 7 is time; W is the plate transverse displacement; F is the stress function;
T is the axisymmetric temperature distribution; 7 is the initial stress-free temperature; p is the material
density; 4 is the plate thickness; e is the dilatational strain due to the thermal effect; ¢, is the heat capacity
coefficient at constant pressure; « is the coefficient of thermal expansion; & is the thermal conductivity; E is
the modulus of elasticity; v is Poisson’s ratio; and D = lzg’f 7 is the bending rigidity. In this paper, we
consider the case in which the heat flux O = 0.

Newman and Forray (1962) used von Kdrman’s plate theory to formulate the problem of nonlinear
axisymmetric static deflections of circular plates under thermal and mechanical loads. Using a finite-
difference scheme, they then investigated the case of a simply-supported immovable plate. For the linear
compatibility relation, we follow the approach of Newman and Forray (1962) and note that

6 = % (N,. - vﬁg) + T - T), (5)
€ = ﬁ (Ag - vﬁ,) +ouT - T), 6)
ﬁ,z%% %g and ﬁgzg, (7)
o= and =ty (8)

where & and ? are the radial and hoop displacements, respectively. Because the temperature distribution
considered here is axisymmetric, the stress function and in-plane displacements are also assumed to be so;
that is, & (F, i, b) = (0,0,0). Therefore, it follows from Eqs. (5)-(8) that
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Then, after eliminating # from Egs. (9) and (10), we obtain the compatibility equation
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Moreover, because of the axisymmetry of F and after using Eq. (3), we reduce Eq. (1) to the following
form:
(12)

. Pw OF (1ow 10w\ 1%WwoF
DV ph— == [ - — 4= — | +=— —.
VPR T o (? R ag2> PR o
Because from Eq. (11), the stress function F is independent of the displacement w, Eq. (12) is a linear
partial-differential equation with variable coefficients for w.
The associated boundary conditions for a clamped-clamped annular plate are as follows:

.

w=0 and aﬁ”:o at # = Ry, Ry, (13)
r

?:T] at 7 = Ry, (14)

T = Tz at IA”:RZ7 (15)

where R; and R, are the inner and outer radii, respectively, and 7} and 7, are constant temperatures. In
addition, because both of the inner and outer boundaries are assumed to be immovable, the radial

deflection # must vanish at 7 = R, and R,. Hence, it follows from Eq. (10) that
OF v oF ~ 3
w*;g‘i’EhO((T*To):O at 7 = Ry, R;. (16)

3. Solution procedure

The terms on the right-hand side of Eq. (2) represent, respectively, the diffusion of heat and thermo-
elastic coupling (Hetnarski, 1987). As discussed by Boley and Weiner (1960), the thermoelastic coupling
term is typically relevant to problems where the response is affected by heat dissipation through the body.
In this case, the heat dissipation occurs at a much slower rate compared to the vibrations of the plate, and
hence the effects of these terms may be neglected and Eq. (2) reduces to

V2T = 0. (17)

The solution of Egs. (14), (15), and (17) yields the following temperature distribution:

~ 1 .

T(r):m[(nlnRz—Tzlan)—(n—Tz)lnr] (18)

Next, we substitute Eq. (18) into Eq. (11) and obtain the equation governing the stress function F as
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The solution of Egs. (16) and (19) is

~
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where C; is arbitrary and
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(22)
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We then substitute Eq. (21) into Eq. (12) and obtain the following equation governing the free un-
damped vibrations of an annular plate under an axisymmetric thermal load:
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and subject to the boundary conditions in Eq. (13).

4. Nondimensional problem

To better understand the problem at hand and ascertain the critical parameters influencing the response
behavior, we introduce the following nondimensional variables and parameters:

2 1 [D. T-T, W T, — T, R,
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Consequently, Eqgs. (13) and (24) become
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where V* is given by Eq. (4) after dropping the hat ("),
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is a measure of the thermal load,
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Fig. 2. The nondimensional temperature distribution A7(r) for different values of the temperature ratio t when (a) » = 0.1 and (b)
b=0.5.

and
C{PI+10)—v(1 -] -2} (I+v(1—1) Pl —v)(1—1)
@ = 4(1 - b?) sb 0 T 21w (33)
From Egs. (18) and (27), the nondimensional temperature distribution is given by
Inr
AT(r) =T+ (1= 1)~ (34)

so that AT(h) =1 and AT(1) = 1. In Fig. 2, we show the nondimensional temperature distribution for
different absolute temperature ratios t. We take in part (a) » = 0.1 and in part (b) b = 0.5. We note that the
temperature distribution approaches a linear behavior as the annulus becomes narrower.

5. Eigenvalue problem

Next, we assume a harmonic response of the form

}" 0 l Z Z ¢nm (unmt+n6 (35)

m=1 n=—o0

and obtain the eigenvalue problem for the nondimensional mode shapes ¢,,(r)e"’ and corresponding
nondimensional natural frequencies w,, as

1d d¢ n?
4 “Fam | o 2 _
Tt 0y g |10V - [P Lal0) + 0| =0 (36)
¢, =0 and dfl’%:o atr=>5,1, (37)
where
- & 1d m\/d 1d »
4 e _ S _ S
v _<dr2+rdr r2)(dr2+rdr r2>. (38)
In the notation used here, n =0,1,2,3,... denotes the number of nodal diameters and m =1,2,3,...

denotes the number of nodal circles. Furthermore, the outer boundary is taken as a nodal circle.
In Fig. 3, we present the first few mode shapes of a clamped-clamped annular plate of » = 0.5 when
p = 0. The top three modes (n = 0) are axisymmetric, whereas the bottom nine modes (n # 0) are asym-
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Fig. 3. The first few (n, m) mode shapes of a clamped—clamped annular plate for 5 = 0.5.

metric. When n # 0, the eigenvalue problem is said to be “degenerate,” because two similar mode shapes,
which are out of phase by 90° exist for a given natural frequency.

6. Analytical results

Next, we present two cases for which analytical closed-form solutions are available. All of the numerical
results we present are for the Poisson ratio v = 0.3.

6.1. Case of T = 1. a zero temperature gradient
When the temperatures at the inner and outer boundaries are equal to each other (i.e., T = 1), there is no

temperature gradient across the annulus, as illustrated in Fig. 2. Setting t = 1 in Egs. (31)—(33), we find that
C, =0, Cy =—1 Li(r) = r, and Ly(r) = 1. Therefore, Eq. (36) becomes

VA + PV Py — @2 P = 0. (39)
The general solution of Eq. (39) can be expressed in terms of Bessel functions as

Gun(r) = ArJu(&17) + Y, (&17) + A3L,(Eor) + AsK, (&), (40)
where

& =\/% [P+\/p2+4wﬁm}, (41)
b= 5ot +don,). (42)

Substituting Eq. (40) into the boundary conditions, we obtain the following characteristic equation for the
natural frequencies:
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Jn(ilb) Yn(élb) In(é2b) Kn(iZb)
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where the prime (') indicates the derivative with respect to the argument & for i = 1,2.

In Fig. 4a and b, we present variation of the natural frequencies w,,,, n = 0,1,2,3 and m = 1,2, 3, with
the thermal load p when t = 1. The ratio of the inner radius to the outer radius is » = 0.1 in Fig. 4a and
b = 0.5 in Fig. 4b. We note that, for all cases, the natural frequencies monotonously decrease to zero as p
increases. The point at which w,,, = 0 corresponds to buckling of the plate in a shape similar to the mode
shape ¢,,,(r)e"’.

We can determine the values of p at which buckling occurs by setting w,,, = 0 in Eq. (39) and solving the
resulting problem. When w,,, = 0, the general solution of Eq. (39) forn =1,2,3...is

B
D) = BUL(VBT) + BaY,(Br) + Bar” + (#4)
and for n = 0 (i.e., axisymmetric modes) is
d)om(}") :BIJQ(\/[SF)+32YO(\/]_7F)+B3 +B411’1}". (45)

Then, substituting Eq. (44) and/or Eq. (45) into the boundary conditions, setting the determinant of the
resulting system of algebraic equations equal to zero, and solving for the roots, we obtain the critical
buckling loads. The first few buckling loads p’, are presented in Table 1 for b = 0.1 and 0.5. They are in
agreement with the results in Fig. 4a and b.

As the thermal load is increased, modes having the same number of nodal diameters may become in-
volved in internal resonances. For example, we show in Fig. 5 variation of the natural frequencies wy;, @y,
and w3, corresponding to the first three axisymmetric modes, with p for the cases » = 0.1 and 0.5. We find
that as p increases, a three-to-one internal resonance 3wg; ~ @y, may occur at p ~ 14 and 42.5, respec-

20
160 __
12 |

@,
30

Fig. 4. Variation of the first few natural frequencies w,, with the thermal load p when 7 = 1.
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Table 1

Values of the first few critical buckling loads p;, of two annular plates for the case v = 1
n b=0.1 b=05

Pui P Dy P P P

0 50.622 99.986 197.408 158.411 322918 632.161
1 45.024 99.703 190.769 156.513 323.465 630.243
2 45.089 106.087 192.942 152.140 325.278 625.988
3 58.091 124.762 213.440 148.279 328.809 622.490

600
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@y, ~ 3y,

200 — 2 5(‘"03 — )
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AT ‘ ‘ ‘ 0 ! ‘ ! T ‘ T
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Fig. 5. Variation of the natural frequencies of the first three axisymmetric modes with the thermal load p when 7 = 1: (a) 5 = 0.1 and
(b) b=0.5.

tively. Furthermore, a combination internal resonance %(a)m — wo1) & wy, may occur at p ~ 39 and 125,
respectively.

Similarly, modes having the same number of nodal circles may also become involved in internal reso-
nances as p is increased. Such cases are discussed later.

6.2. Case of b = 0: a circular plate

Another case for which closed-form solutions exist is the thermal loading of a circular plate, obtained by
setting b = 0. Doing so, we again arrive at Eq. (39). This is because it follows from Eq. (18) that in the limit
R, — 0, the temperature distribution 7' (#) = T», and hence there is no temperature gradient across the plate.
However, for this case, only the boundary conditions at » = 1 in Eq. (37) are considered, augmented with
the constraint that the deflection must be finite at the origin; that is, ¢(0) < oco. The solution of this problem

is given by Eqgs. (40)—(42) after setting A, = 44 = 0. The characteristic equation governing the natural
frequencies is given by

_ Jn(él) In(é2) —
A=ler) ane| =" (46)

In Fig. 6, we show variation of the first few natural frequencies with the thermal load p for a circular
plate. Again, we note a monotonic decrease in the w,, with increasing p. The critical values of p at which
buckling occurs can be found by setting B, = B, = 0 in Eq. (44) and/or Eq. (45), satisfying the boundary
conditions at » = 1, setting the determinant of the resulting system of algebraic equations equal to zero, and
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Fig. 6. Variation of the first few natural frequencies w,,, with the thermal load p for the case b = 0.

Table 2

Values of the first few critical buckling loads p;, of a circular plate (i.e., b = 0)
" P P P
0 14.682 49.219 103.499
1 26.375 70.850 135.021
2 40.707 95.278 169.395
3 57.583 122.428 206.570

solving for the roots. The first few buckling loads are presented in Table 2, which are in agreement with the
results in Fig. 6.

We note from Table 2 that, for a given number of nodal circles m in the mode shapes, the criti-
cal buckling loads significantly vary with the number of nodal diameters »n. This is because, for a circular
plate at the initial stress-free temperature 7; (i.e., p = 0), the natural frequencies of modes having the
same value of m vary considerably with n, as can be seen from Fig. 6. In contrast, in the annular plate, for
a given value of b, such critical buckling loads are relatively close to each other, as seen from Table 1.
This is because the corresponding natural frequencies at p = 0 are also relatively close, as shown in Fig. 4a
and b.

With the variation of the thermal load, internal resonances may also be activated in a circular plate. In
Fig. 7, we show variation of the natural frequencies of the first three axisymmetric modes. We find that for
p =~ 0.9, the internal combination resonance % (w3 — wo1) = wpy may occur. But, we note the absence of the
internal resonance 3wy =~ @y, in Fig. 7, which was discussed earlier for annular plates, and instead find that
3wy & w3 for p ~ 28.5. In general, these resonances may also be present among other modes having the
same value of n # 0.
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Fig. 7. Variation of the natural frequencies of the first three axisymmetric modes with the thermal load p for the case b = 0.

7. General case

Equation (36) is a linear ordinary-differential equation with variable coefficients for the annular plate
mode shapes. In general, closed-form solutions of Eq. (36) are not available. Therefore, we use a shooting
method to numerically solve the eigenvalue problem. To this end, we form two initial-value problems
consisting of Eq. (36) and the boundary conditions at » = 4 in Eq. (37). We augment the first problem by
¢ (b) =1and ¢! (b) = 0 and the second problem by ¢ (b) =0 and ¢/ (b) = 1. Then, for a given value
of p, we guess an initial value of ®,,, integrate both problems over » € [b, 1], and obtain the solutions d)fﬁ,z (r)
and 4’53,3 (r). Next, we express the solution of the original eigenvalue problem as a linear combination of
both solutions as follows:

Gun(r) = 100, (1) + 200, (1), (47)

where the ¢; are constants. Using Eq. (47) to satisfy the boundary conditions at » = 1 in Eq. (37), we arrive
at the characteristic equation

()] (1)
s D) _ 9mD) goyy o (48)

Because the initial value of w,, is simply a guess, this condition is unlikely to be satisfied at first. However,
through an iterative procedure, one can converge on the correct value of w,,,. Having done so, we represent
the mode shape as

Pun (1)

i (1)
where ¢ is determined so that fbl rqu,m (r)dr = 1. The procedure is then repeated for a different value of p
until buckling is reached.

In Fig. 8a and b, we present for b = 0.1 and 0.5, respectively, variation of the first few natural fre-
quencies with the thermal load p when t = 2; that is, the absolute temperature at the inner radius is twice
the absolute temperature at the outer radius. The trend in both figures is similar to that in Fig. 4a and b for

7 = 1. However, buckling of the plate in this case occurs for smaller values of p. The corresponding
buckling loads are presented in Table 3.

bun(r) = 1 | S () b (r) |, (49)
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(b) b=0.5

Fig. 8. Variation of the first few natural frequencies w,,, with the thermal load p when 7 = 2.

Table 3

Values of the first few critical buckling loads p;,, of two annular plates for the case 7 =2
n b=0.1 b=05

P P P P P P

0 39.581 77.624 153.283 110.901 225.423 442.976
1 35.695 77.788 148.515 109.709 225.841 441.552
2 36.594 83.647 150.817 106.995 227.224 438.361
3 48.138 99.612 167.896 104.736 229.905 435.659

In Fig. 9a and b, we present variation of the first few natural frequencies with p when t = 0.5; that is, the
absolute temperature at the inner radius is one-half the absolute temperature at the outer radius. In this
case, we find that the critical thermal loads p;, at which the plate buckles are greater than those when 7 =1,
in contrast to the previous case of © = 2. These values are presented in Table 4.

8. Approximate closed-form solutions

From the numerical results obtained in Figs. 4, 6, §, and 9, we note that, for relatively small values of p,
the natural frequencies of the higher modes vary almost linearly with p. This point is further illustrated in
Fig. 10, where we present variation of the first few natural frequencies w,,, of a circular plate. In part (a), we
vary p up to the lowest buckling load p;, = 14.682, and in part (b), we vary p up to 25% of the nmth mode
buckling load p;, . Following Eq. (40) for the cases of 1 =1 or b = 0, we note that in Eq. (39), the term
PV, éfq&nm while the term V*¢,, o éfq’)nm, where i = 1,2. Defining ¢ = 2~ in Egs. (41) and (42), we
express the &; for values of e < 1 as "
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(a) b=0.1 o (b) b=0.5 1909

Fig. 9. Variation of the first few natural frequencies w,, with the thermal load p when 7 = 0.5.

Table 4
Values of the first few critical buckling loads p;,, of two annular plates for the case 7 = 0.5

n b=0.1 b=0.5

Dt P P P P D3

0 58.804 116.780 230.678 201.584 412.002 803.846

1 51.777 116.018 222.450 198.941 412.643 801.554

2 50.995 122.496 224.259 192.801 414.779 796.536

3 64.772 142.742 246.875 187.156 418.973 792.588

1 1Y’ 1
Ci:\/wnm :l:§6+ EE +1%\/(,0,,m 1:&16 . (50)

Subsequently, the term V*¢,,. /(0?2 ¢,,) = O(1) while the term pV3¢,,. /(@2 ,.) = O(e).

Therefore, for values of p < w,,,, we propose to use the method of strained parameters (Nayfeh, 1981) to
obtain approximate closed-form solutions to the nondimensional eigenvalue problem. To this end, we
assume the mode shapes and natural frequencies of the plate to be equal to those of an unheated plate with
small perturbations added to them. That is, we let

Do (1) = i) () + €D (1) + -, (51)

(,O:m = Wpm|0] + €Wpm(1] +- (52)

where the “‘asterisk” indicates approximate solutions of the nondimensional mode shapes and natural
frequencies.
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Fig. 10. Variation of the first few natural frequencies for a circular plate (b = 0) with the thermal load p for up to (a) the lowest
buckling load pj;, = 14.682 and (b) 25% of the corresponding buckling load p;, .

8.1. Case of b = 0: a circular plate

We set p = ew,,, and substitute Egs. (51) and (52) into Eq. (39), the boundary conditions at » = 1 in Eq.
(37), and the constraint ¢(r) < co at » = 0. Then, after separating the terms of equal powers of ¢, we obtain
the following hierarchy of boundary-value problems:

@4¢[0] - CU[ZO]d’[O] =0, (53)

Vi) — oy iy = 20000d — 00 V) (54)

where the subscript nm has been temporarily dropped for convenience. The corresponding boundary
conditions are ¢y < oo at » =0 and

d
(j)[k]:() and &:0 atr =1 (55)
r
for k=0,1.
The solution of the first-order problem, corresponding to the unheated plate, can be expressed as
b0 (r) = DiJu (Vo) + DaY, (Vour) + Dsly (yarr) + Dak, (Varr), (56)

where D, = Dy = 0 to satisfy the constraint at » = 0. The coefficients D, and D; and the natural frequencies
of the unheated circular plate wy are determined from

i (/@) L(yog) 1D _ [0
! [/ D - 0 (57)
voud;(vow)  voul,(vem) ] | Ds
and the normalization constraint fol rdb[zo] dr = 1. In Eq. (57), the “s” denotes the derivative with respect to
the argument , /7.
Next, we substitute the results for ¢y () and wy into Eq. (54). Since the resulting homogeneous problem
in Eq. (54) is the same as Eq. (53), we find that nontrivial solutions of the nonhomogeneous problem in
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Eq. (54) exist only if a solvability condition is satisfied (Nayfeh, 1981). Towards this end, we multiply Eq.
(54) by the rn(r), where 5(r) is the solution of the adjoint problem, integrate by parts until all of the
derivatives are transferred from ¢y to 5, apply the boundary conditions on ¢y, find that 1 = ¢, and,
consequently, arrive at the solvability condition

1
CU[]] = 5 A r¢[0]v2¢[0] dr. (58)

Therefore, it follows from Eqgs. (52) and (58) that, to first-order, the natural frequencies of the heated
circular plate for p < w,, are approximately given by

1
* p &2
Cunm ~ w"”’l + / r nm V nm dl", 59
[0] 20m o Bumio) V" Pumo) (59)
where ¢ is replaced with P
Dpmo]

In Fig. 11, we present the percent errors

Ert,, = ’ Dom = Do |5 100% (60)
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Fig. 11. Variation of the percent errors, Err,,,, of the approximate natural frequencies for a circular plate (i.e., b = 0) with (a) the small
parameter € = —£—, (b) p<25% of p;,, and (c) p up to the lowest buckling load pj, = 14.682.
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resulting from using Eq. (59) to estimate the natural frequencies, relative to those obtained numerically, as

the thermal load p is varied. In part (a), we present the percent errors in terms of the parameter € = -~ o

Although the solution in Eq. (59) was obtained for ¢ < 1, we find very good agreement of up to
Err,,, < 1.2% for values of € <0.3. In part (b), we present the percent errors in terms of the thermal load
ratio £-. Again, there is very good agreement of up to Err,,, < 1.2% for values of p < 25% of p!, . In part (c),
we present the percent errors in terms of p < p5, (the lowest buckling load) and conclude that the accuracy
of the approximation increases for increasing natural frequencies @, of the unheated plate.

8.2. Case of b # 0: an annular plate

Although for the general problem, where t may be different from unity, closed-form solutions are not yet
available, one may surmise from the previous numerical results that a similar argument for ordering the
different terms in Eq. (36) could be made. This is because the solutions of the general problem can be
expressed in terms of the Bessel functions in Eq. (40) as

o0

G (1) = Z[AllJl(flr) + Ay Yi(Er) + A3 (Ear) + AuKi(Er)],

=1

Percent Error (Err,,)
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Fig. 12. Variation of the percent errors, Err,,,, of the approximate natural frequencies, for an annular plate having 5 = 0.1 and = = 0.5,
with (a) the small parameter ¢ =

—— (b) p<25% of p:,, and (c) p up to the lowest buckling load p;, = 50.995.
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where the &; are given by Eq. (50). Therefore, substituting the expansions in Egs. (51) and (52) into Eq. (36),
setting € = £, and separating terms of equal powers of ¢, we obtain Eq. (53) and

i
nm

- 1d d¢ n?
V4¢m — w[20]¢[1] = 2(1)[0]60[1](,{7[0] — (D[()] { - |:L1 (r) [0] :| — _LZ(F)(:{)[O] } (61)

r dr dr r?

The solution of the first-order problem is given by Eq. (56) where the coefficients D; — D, and natural
frequencies wyy of the unheated annular plate are determined from

ANGL) Y, (y@ib) 1,(\/Opb) K, (/@) D,
Voul, (youb) oY, (Voub) ol (oub) opk,(Voub) | | Dy |
YAV Y, (/@) L(\/ow) K, (/@) Ds
Voud,(ven) oY, (Veo)  voul(yon) ook, (o) | (D

and the normalization constraint j}: r(i)[zo] dr = 1. Then, substituting the results for ¢ () and wy into
Eq. (61), solving for the adjoint 5(r) = ¢4 (r), and determining the solvability condition, we find that, to
first-order, the natural frequencies of the heated annular plate for p < w,,, are approximately given by

(62)
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Fig. 13. Variation of the percent errors, Err,,,, of the approximate natural frequencies, for an annular plate having 5 = 0.5 and © = 0.5,
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1 1d dd)nm 2
/h r¢nm[0]{;a {Ll(r) o [01] ’:—sz(r)d)nm[o]}dr. (63)

In Figs. 12 and 13, we present the percent errors Err,, resulting when using Eq. (63) to estimate the
natural frequencies, relative to those obtained numerically, for annular plates with 5 = 0.1 and 0.5,

* ~
wnm ~ w”m[o] +

anm [0]

60 . 120

120

(a) p (b) p
b=0.1 b=0.5
Fig. 14. Variation of the lowest four natural frequencies (w;, w1, W21, 3;) for two annular plates with the thermal load p for the three

cases: (i) T =2, (ii)) T =1, and (iii) t = 0.5. The numbers 1-6 in part (b) denote the resonances wy ~ W, Wy ~ Wy, W1 ~ Wy,
wo1 = w31, W] = W31, and w,; & s, respectively.
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respectively. In both cases, the value of © = 0.5. Again, we note that the approximate solution of Eq. (63)
exhibits similar trends to those discussed for the circular plate in the previous section.

9. Modal interactions

We mentioned earlier that, as p varies, internal resonances involving different modes may be activated.
This, in turn, could lead to complex and sometimes undesirable vibrations if the plate is under an external
excitation, as it may be the case in many applications having such a component. If follows from Figs. 5 and
7 that three-to-one and combination internal resonances may be activated among modes having the same
number # of nodal diameters. Moreover, the results in Fig. 5 are qualitatively true for values of 7 # 1.

In addition, one-to-one internal resonances between modes having the same number m of nodal circles
may be activated in annular plates. For example, in Fig. 14a, we present the variation of the natural fre-
quencies wq;, w11, Wy, and ws; with p when b = 0.1 for (i) T =2, (ii)) t = 1, and (iii)) T = 0.5. As p is in-
creased, we find that the one-to-one internal resonances wy; ~ w;; and wg = w;; may be activated, as
shown for t = 2. Setting t = 1, we obtain a similar behavior, but with the two internal resonances shifted to
the right in p. In such cases, vibrations of the plate could consist of both standing and traveling waves.
Reducing 7 to 0.5, we find that a third one-to-one internal resonance w;; =~ w,; may also be activated.

We increase the ratio of the inner radius to the outer radius to » = 0.5 and present once more in Fig. 14b
the variation of wy, w1, w,1, and ws; with p for (i) T = 2, (ii) t = 1, and (iii) = = 0.5. In this case, the natural
frequencies are closer to each other, resulting in six different combinations of one-to-one internal reso-
nances: wopy; ~ Wiy, W1 < W1, W] < Wy, W] = W31, W] < W3, and Wy =~ W3]. They are numbered 1—6,
respectively, in Fig. 14b and the corresponding values of p are presented in Table 5. We find that the
resonances are clustered relatively close to each other, such that two or more of them may be activated
simultaneously, possibly resulting in three- or four-mode interactions.

10. Summary

We investigated the mode shapes and natural frequencies of circular and annular plates under axi-
symmetric steady-state thermal loads. We formulated the problem by using a linearized version of the von
Kdrman plate theory and the heat conduction equation. We neglected the influence of the thermoelastic
coupling term and solved the heat conduction equation for the steady-state temperature distribution. Then,
we solved the compatibility equation for the stress function and substituted the result into the equation of
motion to obtain the eigenvalue problem.

Table 5

Values of p for which the one-to-one internal resonances 1-6 in Fig. 14b may occur
# Resonance )4

7=2 t=1 1=0.5

1 Wy X 01 72.3 99.0 122.4
2 Wy A Wy 76.4 105.1 129.3
3 W1 A Wy 77.8 107.0 131.7
4 o1 A W31 83.4 114.6 140.9
5 )] ~ W3] 84.8 116.5 143.3
6 Wy N W31 88.9 122.1 150.2
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We presented and analyzed two cases where closed-form solutions exist: an annular plate under a zero
temperature gradient and a circular plate. Furthermore, we used a shooting method to numerically solve
and analyze cases of nonzero temperature gradients. We studied the influence of the thermal load p, the
ratio 7 of the absolute temperatures at the boundaries, and the ratio 4 of the inner radius to the outer radius
on the natural frequencies of the system. We found that, as the thermal load is increased, the natural
frequencies monotonously decrease to zero, causing the plate to buckle. When the temperature at the inner
boundary is greater than that at the outer boundary (i.e., t > 1), a lower thermal load will cause buckling,
and vice versa. Furthermore, with an increase in the ratio b, the natural frequencies increase and larger
thermal loads are needed to cause buckling.

For values of p < w,,,, we used the method of strained parameters to obtain approximate closed-form
expressions for the natural frequencies. We showed, by examples for both circular and annular plates, that
these approximations can yield very accurate results, especially for the higher natural frequencies for values
of p up to the lowest buckling level.

Varying the thermal load, we found that several types of internal resonances may be activated. For
example, in annular and circular plates, we found that three-to-one and combination internal resonances
may occur among modes having the same number n of nodal diameters. Arafat and Nayfeh (2003)
investigated the nonlinear responses of clamped—clamped thermally loaded annular plates in the presence of
a three-to-one internal resonance between the second and first axisymmetric modes (i.e., wg = 3w,;) when
the second mode is excited near primary resonance (i.e., 2 =~ ). They used a combination of a numerical
shooting technique and the method of multiple scales to obtain approximate solutions and found that two-
mode periodic vibrations of the plate with a large component from the first mode occur, appearing as
isolated solutions “islands” in the force- and frequency-response curves. Moreover, two-mode quasiperi-
odic vibrations of the plate can develop through Hopf bifurcations.

Furthermore, in annular plates, modes with the same number m of nodal circles exhibit frequency
crossovers, and hence one-to-one internal resonances. For larger values of b, these crossovers occur closer
to each other, and hence simultancous one-to-one internal resonances might be activated. An interesting
consequence of the frequency crossovers is that the first buckling shape of an annular plate may not be in
the form of the mode shape of the lowest natural frequency in the absence of heat. For example, if wy, is the
lowest natural frequency when p = 0, the plate may first buckle at p = pj, (and not pf,) in the shape of the
asymmetric mode ¢,,(r)e!’ due to the frequency crossing between wy; and w;, as evident from Fig. 14a for
the case of T =2. In other cases, the first buckling shape may be in the form of the mode ¢,,e*’, as
demonstrated by Fig. 14a for the cases of T = 1 and 0.5, and the mode ¢5,€*’, as demonstrated by Fig. 14b
for all three cases.
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