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Abstract

The behavior of annular plates with clamped–clamped immovable boundary conditions subjected to axisymmetric

in-plane thermal loads is considered. The plate is modeled using a linear form of the von K�arm�an plate theory and the

radial temperature distribution is determined from the steady-state heat conduction equation. A numerical shooting

method is used to calculate the mode shapes and natural frequencies and the influence of key thermal and geometric

parameters on the free vibrations and buckling of the annulus is investigated. Further, an approximate closed-form

expression for the natural frequencies is introduced and its validity is explored by comparing its results with those

obtained numerically. As a special case, the behavior of clamped thermally loaded circular plates is also investigated.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Plates are key components in many structural and machinery applications. Some examples include

turbines, tanks, automotive braking systems, and, more recently, microelectromechanical system (MEMS)

devices, such as sensors and micropumps. In many of these applications, the plates are subjected to thermal

loads, which may cause buckling and/or induce unexpected dynamic responses. In fact, as early as the

1920s, von Freudenreich (1925) experimentally investigated vibrations in steam turbine disks and matched
his results with the theory presented by Stodola (1924). As indicated in the review by Thornton (1993), the

thermal buckling of plates and shells has been the subject of much research in the past 50 some years.

However, the analysis of the dynamic responses of annular plates subjected to thermal loads has received

little attention.

In a series of papers, Mote (1965, 1966, 1967) investigated the influence of inducing thermal membrane

stresses in circular saws in an effort to increase their natural frequencies and hence, improve their stability.

Fedorov (1976) examined the linear thermostability problem of elastically clamped variable-stiffness
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Fig. 1. A schematic of (a) an annular plate and (b) a cross-sectional view illustrating a typical steady-state axisymmetric temperature

distribution.
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annular plates under axisymmetric radial nonuniform thermal loads. He found that, in certain cases,
variations of the Young modulus and the Poisson ratio with temperature cannot be neglected. Irie and

Yamada (1978) investigated the linear free vibrations of elastically supported circular and annular plates,

with one edge exposed to an axisymmetric sinusoidal heat flux and the other edge thermally insulated.

More recently, the nonlinear free vibrations of isotropic and axisymmetric orthotropic annular plates

carrying concentric rigid masses and subject to thermal loads were investigated by Li et al. (2002). They

modeled the plates using the von K�arm�an equations and assumed the nonlinear responses to be harmonic.

They then applied the Kantorovich averaging method and examined the nonlinear natural frequencies

and thermal buckling loads for hinged and clamped immovable boundary conditions. In all of the afore-
mentioned works, the temperature distribution was found to be a significant parameter affecting the free

response.

In this work, the free vibrations and buckling of annular plates with clamped–clamped immovable

boundary conditions subjected to axisymmetric in-plane thermal loads are analyzed (see Fig. 1). A linearized

version of the von K�arm�an plate theory is used to model the behavior of the annular plates and explore the

influence of several thermal and geometric parameters on the system response. The natural frequencies and

mode shapes are calculated numerically by a shooting method. In addition, the method of strained

parameters is applied to determine an approximate closed-form expression for the natural frequencies. The
free vibrations and buckling of thermally loaded circular plates are also investigated as a special case.
2. Problem formulation

The linear undamped free vibrations of an annular plate under an axisymmetric thermal load are

governed by
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where
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and the biharmonic operator is given by
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Here, r̂ and h are polar coordinates; t̂ is time; ŵ is the plate transverse displacement; bF is the stress function;bT is the axisymmetric temperature distribution; T0 is the initial stress-free temperature; q is the material

density; h is the plate thickness; e is the dilatational strain due to the thermal effect; cp is the heat capacity
coefficient at constant pressure; a is the coefficient of thermal expansion; k is the thermal conductivity; E is

the modulus of elasticity; m is Poisson�s ratio; and D ¼ Eh3

12ð1�m2Þ is the bending rigidity. In this paper, we

consider the case in which the heat flux bQ ¼ 0.

Newman and Forray (1962) used von K�arm�an�s plate theory to formulate the problem of nonlinear
axisymmetric static deflections of circular plates under thermal and mechanical loads. Using a finite-

difference scheme, they then investigated the case of a simply-supported immovable plate. For the linear

compatibility relation, we follow the approach of Newman and Forray (1962) and note that
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where û and v̂ are the radial and hoop displacements, respectively. Because the temperature distribution

considered here is axisymmetric, the stress function and in-plane displacements are also assumed to be so;
that is, o

oh ðbF ; û; v̂Þ ¼ ð0; 0; 0Þ. Therefore, it follows from Eqs. (5)–(8) that
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Then, after eliminating û from Eqs. (9) and (10), we obtain the compatibility equation
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Moreover, because of the axisymmetry of bF and after using Eq. (3), we reduce Eq. (1) to the following

form:
Dr̂4ŵþ qh
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Because from Eq. (11), the stress function bF is independent of the displacement ŵ, Eq. (12) is a linear

partial-differential equation with variable coefficients for ŵ.
The associated boundary conditions for a clamped–clamped annular plate are as follows:
ŵ ¼ 0 and
oŵ
or̂

¼ 0 at r̂ ¼ R1;R2; ð13Þ

bT ¼ T1 at r̂ ¼ R1; ð14Þ

bT ¼ T2 at r̂ ¼ R2; ð15Þ

where R1 and R2 are the inner and outer radii, respectively, and T1 and T2 are constant temperatures. In

addition, because both of the inner and outer boundaries are assumed to be immovable, the radial

deflection û must vanish at r̂ ¼ R1 and R2. Hence, it follows from Eq. (10) that
o2bF
or̂2

� m
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3. Solution procedure

The terms on the right-hand side of Eq. (2) represent, respectively, the diffusion of heat and thermo-

elastic coupling (Hetnarski, 1987). As discussed by Boley and Weiner (1960), the thermoelastic coupling

term is typically relevant to problems where the response is affected by heat dissipation through the body.

In this case, the heat dissipation occurs at a much slower rate compared to the vibrations of the plate, and
hence the effects of these terms may be neglected and Eq. (2) reduces to
r̂2bT ¼ 0: ð17Þ
The solution of Eqs. (14), (15), and (17) yields the following temperature distribution:
bT ðr̂Þ ¼ 1
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ðT1 lnR2

h
� T2 lnR1Þ � ðT1 � T2Þ ln r̂

i
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Next, we substitute Eq. (18) into Eq. (11) and obtain the equation governing the stress function bF as
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where
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The solution of Eqs. (16) and (19) is
bF ðr̂Þ ¼ bC1r̂2 þ bC2 ln r̂ þ bC3 þ
1

4
EhaKr̂2ðln r̂ � 1Þ; ð21Þ
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where bC3 is arbitrary and
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We then substitute Eq. (21) into Eq. (12) and obtain the following equation governing the free un-

damped vibrations of an annular plate under an axisymmetric thermal load:
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and subject to the boundary conditions in Eq. (13).
4. Nondimensional problem

To better understand the problem at hand and ascertain the critical parameters influencing the response

behavior, we introduce the following nondimensional variables and parameters:
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Consequently, Eqs. (13) and (24) become
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Fig. 2. The nondimensional temperature distribution DT ðrÞ for different values of the temperature ratio s when (a) b ¼ 0:1 and (b)

b ¼ 0:5.
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and
C1 ¼
b2 ð1þ sÞ � mð1� sÞ½ � � 2f g
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8 ln b
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From Eqs. (18) and (27), the nondimensional temperature distribution is given by
DT ðrÞ ¼ 1þ ðs� 1Þ ln r
ln b

ð34Þ
so that DT ðbÞ ¼ s and DT ð1Þ ¼ 1. In Fig. 2, we show the nondimensional temperature distribution for

different absolute temperature ratios s. We take in part (a) b ¼ 0:1 and in part (b) b ¼ 0:5. We note that the

temperature distribution approaches a linear behavior as the annulus becomes narrower.
5. Eigenvalue problem

Next, we assume a harmonic response of the form
wðr; h; tÞ ¼
X1
m¼1

X1
n¼�1

/nmðrÞeiðxnmtþnhÞ ð35Þ
and obtain the eigenvalue problem for the nondimensional mode shapes /nmðrÞeinh and corresponding
nondimensional natural frequencies xnm as
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In the notation used here, n ¼ 0; 1; 2; 3; . . . denotes the number of nodal diameters and m ¼ 1; 2; 3; . . .
denotes the number of nodal circles. Furthermore, the outer boundary is taken as a nodal circle.

In Fig. 3, we present the first few mode shapes of a clamped–clamped annular plate of b ¼ 0:5 when

p ¼ 0. The top three modes (n ¼ 0) are axisymmetric, whereas the bottom nine modes (n 6¼ 0) are asym-



Fig. 3. The first few ðn;mÞ mode shapes of a clamped–clamped annular plate for b ¼ 0:5.

H.N. Arafat et al. / International Journal of Solids and Structures 41 (2004) 3031–3051 3037
metric. When n 6¼ 0, the eigenvalue problem is said to be ‘‘degenerate,’’ because two similar mode shapes,

which are out of phase by 90� exist for a given natural frequency.
6. Analytical results

Next, we present two cases for which analytical closed-form solutions are available. All of the numerical

results we present are for the Poisson ratio m ¼ 0:3.

6.1. Case of s ¼ 1: a zero temperature gradient

When the temperatures at the inner and outer boundaries are equal to each other (i.e., s ¼ 1), there is no
temperature gradient across the annulus, as illustrated in Fig. 2. Setting s ¼ 1 in Eqs. (31)–(33), we find that

C2 ¼ 0, C1 ¼ � 1
2
, L1ðrÞ ¼ r, and L2ðrÞ ¼ 1. Therefore, Eq. (36) becomes
~r4/nm þ p ~r2/nm � x2
nm/nm ¼ 0: ð39Þ
The general solution of Eq. (39) can be expressed in terms of Bessel functions as
/nmðrÞ ¼ A1Jnðn1rÞ þ A2Ynðn1rÞ þ A3Inðn2rÞ þ A4Knðn2rÞ; ð40Þ
where
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Substituting Eq. (40) into the boundary conditions, we obtain the following characteristic equation for the
natural frequencies:
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D ¼
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where the prime (0) indicates the derivative with respect to the argument nir for i ¼ 1; 2.
In Fig. 4a and b, we present variation of the natural frequencies xnm, n ¼ 0; 1; 2; 3 and m ¼ 1; 2; 3, with

the thermal load p when s ¼ 1. The ratio of the inner radius to the outer radius is b ¼ 0:1 in Fig. 4a and

b ¼ 0:5 in Fig. 4b. We note that, for all cases, the natural frequencies monotonously decrease to zero as p
increases. The point at which xnm ¼ 0 corresponds to buckling of the plate in a shape similar to the mode

shape /nmðrÞeinh.
We can determine the values of p at which buckling occurs by setting xnm ¼ 0 in Eq. (39) and solving the

resulting problem. When xnm ¼ 0, the general solution of Eq. (39) for n ¼ 1; 2; 3 . . . is
/nmðrÞ ¼ B1Jnð
ffiffiffi
p

p
rÞ þ B2Ynð

ffiffiffi
p

p
rÞ þ B3rn þ

B4

rn
ð44Þ
and for n ¼ 0 (i.e., axisymmetric modes) is
/0mðrÞ ¼ B1J0ð
ffiffiffi
p

p
rÞ þ B2Y0ð

ffiffiffi
p

p
rÞ þ B3 þ B4 ln r: ð45Þ
Then, substituting Eq. (44) and/or Eq. (45) into the boundary conditions, setting the determinant of the

resulting system of algebraic equations equal to zero, and solving for the roots, we obtain the critical

buckling loads. The first few buckling loads p�nm are presented in Table 1 for b ¼ 0:1 and 0:5. They are in

agreement with the results in Fig. 4a and b.
As the thermal load is increased, modes having the same number of nodal diameters may become in-

volved in internal resonances. For example, we show in Fig. 5 variation of the natural frequencies x01, x02,

and x03, corresponding to the first three axisymmetric modes, with p for the cases b ¼ 0:1 and 0:5. We find

that as p increases, a three-to-one internal resonance 3x01 � x02 may occur at p � 14 and 42:5, respec-
Fig. 4. Variation of the first few natural frequencies xnm with the thermal load p when s ¼ 1.



Table 1

Values of the first few critical buckling loads p�nm of two annular plates for the case s ¼ 1

n b ¼ 0:1 b ¼ 0:5

p�n1 p�n2 p�n3 p�n1 p�n2 p�n3

0 50.622 99.986 197.408 158.411 322.918 632.161

1 45.024 99.703 190.769 156.513 323.465 630.243

2 45.089 106.087 192.942 152.140 325.278 625.988

3 58.091 124.762 213.440 148.279 328.809 622.490

(a) (b)

Fig. 5. Variation of the natural frequencies of the first three axisymmetric modes with the thermal load p when s ¼ 1: (a) b ¼ 0:1 and

(b) b ¼ 0:5.
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tively. Furthermore, a combination internal resonance 1
2
ðx03 � x01Þ � x02 may occur at p � 39 and 125,

respectively.

Similarly, modes having the same number of nodal circles may also become involved in internal reso-

nances as p is increased. Such cases are discussed later.
6.2. Case of b ¼ 0: a circular plate

Another case for which closed-form solutions exist is the thermal loading of a circular plate, obtained by

setting b ¼ 0. Doing so, we again arrive at Eq. (39). This is because it follows from Eq. (18) that in the limit

R1 ! 0, the temperature distribution bT ðr̂Þ ¼ T2, and hence there is no temperature gradient across the plate.

However, for this case, only the boundary conditions at r ¼ 1 in Eq. (37) are considered, augmented with

the constraint that the deflection must be finite at the origin; that is, /ð0Þ < 1. The solution of this problem

is given by Eqs. (40)–(42) after setting A2 ¼ A4 ¼ 0. The characteristic equation governing the natural
frequencies is given by
D ¼ Jnðn1Þ Inðn2Þ
n1J 0

nðn1Þ n2I 0nðn2Þ





 



 ¼ 0: ð46Þ
In Fig. 6, we show variation of the first few natural frequencies with the thermal load p for a circular

plate. Again, we note a monotonic decrease in the xnm with increasing p. The critical values of p at which

buckling occurs can be found by setting B2 ¼ B4 ¼ 0 in Eq. (44) and/or Eq. (45), satisfying the boundary
conditions at r ¼ 1, setting the determinant of the resulting system of algebraic equations equal to zero, and



Fig. 6. Variation of the first few natural frequencies xnm with the thermal load p for the case b ¼ 0.

Table 2

Values of the first few critical buckling loads p�nm of a circular plate (i.e., b ¼ 0)

n p�n1 p�n2 p�n3

0 14.682 49.219 103.499

1 26.375 70.850 135.021

2 40.707 95.278 169.395

3 57.583 122.428 206.570
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solving for the roots. The first few buckling loads are presented in Table 2, which are in agreement with the

results in Fig. 6.

We note from Table 2 that, for a given number of nodal circles m in the mode shapes, the criti-

cal buckling loads significantly vary with the number of nodal diameters n. This is because, for a circular

plate at the initial stress-free temperature T0 (i.e., p ¼ 0), the natural frequencies of modes having the
same value of m vary considerably with n, as can be seen from Fig. 6. In contrast, in the annular plate, for

a given value of b, such critical buckling loads are relatively close to each other, as seen from Table 1.

This is because the corresponding natural frequencies at p ¼ 0 are also relatively close, as shown in Fig. 4a

and b.

With the variation of the thermal load, internal resonances may also be activated in a circular plate. In

Fig. 7, we show variation of the natural frequencies of the first three axisymmetric modes. We find that for

p � 0:9, the internal combination resonance 1
2
ðx03 � x01Þ � x02 may occur. But, we note the absence of the

internal resonance 3x01 � x02 in Fig. 7, which was discussed earlier for annular plates, and instead find that
3x02 � x03 for p � 28:5. In general, these resonances may also be present among other modes having the

same value of n 6¼ 0.



Fig. 7. Variation of the natural frequencies of the first three axisymmetric modes with the thermal load p for the case b ¼ 0.
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7. General case

Equation (36) is a linear ordinary-differential equation with variable coefficients for the annular plate

mode shapes. In general, closed-form solutions of Eq. (36) are not available. Therefore, we use a shooting
method to numerically solve the eigenvalue problem. To this end, we form two initial-value problems

consisting of Eq. (36) and the boundary conditions at r ¼ b in Eq. (37). We augment the first problem by

/00
nmðbÞ ¼ 1 and /000

nmðbÞ ¼ 0 and the second problem by /00
nmðbÞ ¼ 0 and /000

nmðbÞ ¼ 1. Then, for a given value

of p, we guess an initial value of xnm, integrate both problems over r 2 ½b; 1�, and obtain the solutions /ð1Þ
nmðrÞ

and /ð2Þ
nmðrÞ. Next, we express the solution of the original eigenvalue problem as a linear combination of

both solutions as follows:
/nmðrÞ ¼ c1/
ð1Þ
nmðrÞ þ c2/

ð2Þ
nmðrÞ; ð47Þ
where the ci are constants. Using Eq. (47) to satisfy the boundary conditions at r ¼ 1 in Eq. (37), we arrive

at the characteristic equation
/ð1Þ
nmð1Þ

d/ð2Þ
nmð1Þ
dr

� d/ð1Þ
nmð1Þ
dr

/ð2Þ
nmð1Þ ¼ 0: ð48Þ
Because the initial value of xnm is simply a guess, this condition is unlikely to be satisfied at first. However,

through an iterative procedure, one can converge on the correct value of xnm. Having done so, we represent

the mode shape as
/nmðrÞ ¼ c1 /ð1Þ
nmðrÞ

"
� /ð1Þ

nmð1Þ
/ð2Þ

nmð1Þ
/ð2Þ

nmðrÞ
#
; ð49Þ
where c1 is determined so that
R 1

b r/
2
nmðrÞdr ¼ 1. The procedure is then repeated for a different value of p

until buckling is reached.

In Fig. 8a and b, we present for b ¼ 0:1 and 0:5, respectively, variation of the first few natural fre-

quencies with the thermal load p when s ¼ 2; that is, the absolute temperature at the inner radius is twice

the absolute temperature at the outer radius. The trend in both figures is similar to that in Fig. 4a and b for

s ¼ 1. However, buckling of the plate in this case occurs for smaller values of p. The corresponding
buckling loads are presented in Table 3.



Fig. 8. Variation of the first few natural frequencies xnm with the thermal load p when s ¼ 2.

Table 3

Values of the first few critical buckling loads p�nm of two annular plates for the case s ¼ 2

n b ¼ 0:1 b ¼ 0:5

p�n1 p�n2 p�n3 p�n1 p�n2 p�n3

0 39.581 77.624 153.283 110.901 225.423 442.976

1 35.695 77.788 148.515 109.709 225.841 441.552

2 36.594 83.647 150.817 106.995 227.224 438.361

3 48.138 99.612 167.896 104.736 229.905 435.659
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In Fig. 9a and b, we present variation of the first few natural frequencies with p when s ¼ 0:5; that is, the
absolute temperature at the inner radius is one-half the absolute temperature at the outer radius. In this

case, we find that the critical thermal loads p�nm at which the plate buckles are greater than those when s ¼ 1,

in contrast to the previous case of s ¼ 2. These values are presented in Table 4.
8. Approximate closed-form solutions

From the numerical results obtained in Figs. 4, 6, 8, and 9, we note that, for relatively small values of p,
the natural frequencies of the higher modes vary almost linearly with p. This point is further illustrated in

Fig. 10, where we present variation of the first few natural frequencies xnm of a circular plate. In part (a), we

vary p up to the lowest buckling load p�01 ¼ 14:682, and in part (b), we vary p up to 25% of the nmth mode

buckling load p�nm. Following Eq. (40) for the cases of s ¼ 1 or b ¼ 0, we note that in Eq. (39), the term

p ~r2/nm / n2i/nm while the term ~r4/nm / n4i/nm, where i ¼ 1; 2. Defining � � p
xnm

in Eqs. (41) and (42), we
express the ni for values of � � 1 as



Fig. 9. Variation of the first few natural frequencies xnm with the thermal load p when s ¼ 0:5.

Table 4

Values of the first few critical buckling loads p�nm of two annular plates for the case s ¼ 0:5

n b ¼ 0:1 b ¼ 0:5

p�n1 p�n2 p�n3 p�n1 p�n2 p�n3

0 58.804 116.780 230.678 201.584 412.002 803.846

1 51.777 116.018 222.450 198.941 412.643 801.554

2 50.995 122.496 224.259 192.801 414.779 796.536

3 64.772 142.742 246.875 187.156 418.973 792.588
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ni ¼
ffiffiffiffiffiffiffiffi
xnm

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�

� 	2

þ 1

svuut � ffiffiffiffiffiffiffiffi
xnm

p
1

�
� 1

4
�

	
: ð50Þ
Subsequently, the term ~r4/nm=ðx2
nm/nmÞ ¼ Oð1Þ while the term p ~r2/nm=ðx2

nm/nmÞ ¼ Oð�Þ.
Therefore, for values of p � xnm, we propose to use the method of strained parameters (Nayfeh, 1981) to

obtain approximate closed-form solutions to the nondimensional eigenvalue problem. To this end, we

assume the mode shapes and natural frequencies of the plate to be equal to those of an unheated plate with
small perturbations added to them. That is, we let
/�
nmðrÞ ¼ /nm½0�ðrÞ þ �/nm½1�ðrÞ þ � � � ; ð51Þ
x�
nm ¼ xnm½0� þ �xnm½1� þ � � � ; ð52Þ
where the ‘‘asterisk’’ indicates approximate solutions of the nondimensional mode shapes and natural

frequencies.



Fig. 10. Variation of the first few natural frequencies for a circular plate (b ¼ 0) with the thermal load p for up to (a) the lowest

buckling load p�01 ¼ 14:682 and (b) 25% of the corresponding buckling load p�nm.
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8.1. Case of b ¼ 0: a circular plate

We set p ¼ �xnm and substitute Eqs. (51) and (52) into Eq. (39), the boundary conditions at r ¼ 1 in Eq.
(37), and the constraint /ðrÞ < 1 at r ¼ 0. Then, after separating the terms of equal powers of �, we obtain
the following hierarchy of boundary-value problems:
~r4/½0� � x2
½0�/½0� ¼ 0; ð53Þ

~r4/½1� � x2
½0�/½1� ¼ 2x½0�x½1�/½0� � x½0� ~r2/½0�; ð54Þ
where the subscript nm has been temporarily dropped for convenience. The corresponding boundary
conditions are /½k� < 1 at r ¼ 0 and
/½k� ¼ 0 and
d/½k�

dr
¼ 0 at r ¼ 1 ð55Þ
for k ¼ 0; 1.
The solution of the first-order problem, corresponding to the unheated plate, can be expressed as
/½0�ðrÞ ¼ D1Jn
ffiffiffiffiffiffiffi
x½0�

p
r

� �
þ D2Yn

ffiffiffiffiffiffiffi
x½0�

p
r

� �
þ D3In

ffiffiffiffiffiffiffi
x½0�

p
r

� �
þ D4Kn

ffiffiffiffiffiffiffi
x½0�

p
r

� �
; ð56Þ
where D2 ¼ D4 ¼ 0 to satisfy the constraint at r ¼ 0. The coefficients D1 and D3 and the natural frequencies
of the unheated circular plate x½0� are determined from
Jn
ffiffiffiffiffiffiffi
x½0�

p� �
In

ffiffiffiffiffiffiffi
x½0�

p� �ffiffiffiffiffiffiffi
x½0�

p
J 0
n

ffiffiffiffiffiffiffi
x½0�

p� � ffiffiffiffiffiffiffi
x½0�

p
I 0n

ffiffiffiffiffiffiffi
x½0�

p� �� �
D1

D3

� �
¼ 0

0

� �
ð57Þ
and the normalization constraint
R 1

0
r/2

½0� dr ¼ 1. In Eq. (57), the ‘‘0’’ denotes the derivative with respect to

the argument
ffiffiffiffiffiffiffi
x½0�

p
r.

Next, we substitute the results for /½0�ðrÞ and x½0� into Eq. (54). Since the resulting homogeneous problem

in Eq. (54) is the same as Eq. (53), we find that nontrivial solutions of the nonhomogeneous problem in
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Eq. (54) exist only if a solvability condition is satisfied (Nayfeh, 1981). Towards this end, we multiply Eq.

(54) by the rgðrÞ, where gðrÞ is the solution of the adjoint problem, integrate by parts until all of the

derivatives are transferred from /½1� to g, apply the boundary conditions on /½1�, find that g ¼ /½0� and,

consequently, arrive at the solvability condition
Fig. 11

param
x½1� ¼
1

2

Z 1

0

r/½0�
~r2/½0� dr: ð58Þ
Therefore, it follows from Eqs. (52) and (58) that, to first-order, the natural frequencies of the heated

circular plate for p � xnm are approximately given by
x�
nm � xnm½0� þ

p
2xnm½0�

Z 1

0

r/nm½0�
~r2/nm½0� dr; ð59Þ
where � is replaced with
p

xnm½0�
.

In Fig. 11, we present the percent errors
Errnm ¼ xnm � x�
nm

xnm





 



	 100% ð60Þ
(a)

(b)

(c)

. Variation of the percent errors, Errnm, of the approximate natural frequencies for a circular plate (i.e., b ¼ 0) with (a) the small

eter � � p
xnm½0�

, (b) p6 25% of p�nm, and (c) p up to the lowest buckling load p�01 ¼ 14:682.
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resulting from using Eq. (59) to estimate the natural frequencies, relative to those obtained numerically, as

the thermal load p is varied. In part (a), we present the percent errors in terms of the parameter � � p
xnm½0�

.

Although the solution in Eq. (59) was obtained for � � 1, we find very good agreement of up to

Errnm 6 1:2% for values of �6 0:3. In part (b), we present the percent errors in terms of the thermal load

ratio p
p�nm
. Again, there is very good agreement of up to Errnm 6 1:2% for values of p6 25% of p�nm. In part (c),

we present the percent errors in terms of p6 p�01 (the lowest buckling load) and conclude that the accuracy

of the approximation increases for increasing natural frequencies xnm½0� of the unheated plate.

8.2. Case of b 6¼ 0: an annular plate

Although for the general problem, where smay be different from unity, closed-form solutions are not yet

available, one may surmise from the previous numerical results that a similar argument for ordering the

different terms in Eq. (36) could be made. This is because the solutions of the general problem can be

expressed in terms of the Bessel functions in Eq. (40) as
Fig. 12

with (a
/nmðrÞ ¼
X1
l¼1

½A1lJlðn1rÞ þ A2lYlðn1rÞ þ A3lIlðn2rÞ þ A4lKlðn2rÞ�;
(a)

(b)

(c)

. Variation of the percent errors, Errnm, of the approximate natural frequencies, for an annular plate having b ¼ 0:1 and s ¼ 0:5,

) the small parameter � � p
xnm½0�

, (b) p6 25% of p�nm, and (c) p up to the lowest buckling load p�21 ¼ 50:995.
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where the ni are given by Eq. (50). Therefore, substituting the expansions in Eqs. (51) and (52) into Eq. (36),

setting � � p
xnm

, and separating terms of equal powers of �, we obtain Eq. (53) and
Fig. 13

with (a
~r4/½1� � x2
½0�/½1� ¼ 2x½0�x½1�/½0� � x½0�

1

r
d

dr
L1ðrÞ

d/½0�

dr

� ��
� n2

r2
L2ðrÞ/½0�

�
: ð61Þ
The solution of the first-order problem is given by Eq. (56) where the coefficients D1 � D4 and natural

frequencies x½0� of the unheated annular plate are determined from
Jn
ffiffiffiffiffiffiffi
x½0�

p
b

� �
Yn

ffiffiffiffiffiffiffi
x½0�

p
b

� �
In

ffiffiffiffiffiffiffi
x½0�

p
b

� �
Kn

ffiffiffiffiffiffiffi
x½0�

p
b

� �ffiffiffiffiffiffiffi
x½0�

p
J 0
n

ffiffiffiffiffiffiffi
x½0�

p
b

� � ffiffiffiffiffiffiffi
x½0�

p
Y 0
n

ffiffiffiffiffiffiffi
x½0�

p
b

� � ffiffiffiffiffiffiffi
x½0�

p
I 0n

ffiffiffiffiffiffiffi
x½0�

p
b

� � ffiffiffiffiffiffiffi
x½0�

p
K 0

n
ffiffiffiffiffiffiffi
x½0�

p
b

� �
Jn

ffiffiffiffiffiffiffi
x½0�
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ffiffiffiffiffiffiffi
x½0�
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ffiffiffiffiffiffiffi
x½0�

p� �
Kn

ffiffiffiffiffiffiffi
x½0�

p� �ffiffiffiffiffiffiffi
x½0�

p
J 0
n

ffiffiffiffiffiffiffi
x½0�

p� � ffiffiffiffiffiffiffi
x½0�

p
Y 0
n

ffiffiffiffiffiffiffi
x½0�

p� � ffiffiffiffiffiffiffi
x½0�

p
I 0n

ffiffiffiffiffiffiffi
x½0�

p� � ffiffiffiffiffiffiffi
x½0�

p
K 0

n
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p� �
26664

37775
D1

D2

D3

D4

8>><>>:
9>>=>>; ¼

0

0

0

0

8>><>>:
9>>=>>; ð62Þ
and the normalization constraint
R 1

b r/
2
½0� dr ¼ 1. Then, substituting the results for /½0�ðrÞ and x½0� into

Eq. (61), solving for the adjoint gðrÞ ¼ /½0�ðrÞ, and determining the solvability condition, we find that, to

first-order, the natural frequencies of the heated annular plate for p � xnm are approximately given by
(a)

(b)

(c)

. Variation of the percent errors, Errnm, of the approximate natural frequencies, for an annular plate having b ¼ 0:5 and s ¼ 0:5,

) the small parameter � � p
xnm½0�

, (b) p6 25% of p�nm, and (c) p up to the lowest buckling load p�31 ¼ 187:156.



(a)

Fig. 14

cases:

x01 �
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x�
nm � xnm½0� þ

p
2xnm½0�

Z 1

b
r/nm½0�

1

r
d

dr
L1ðrÞ

d/nm½0�

dr

� ��
� n2

r2
L2ðrÞ/nm½0�

�
dr: ð63Þ
In Figs. 12 and 13, we present the percent errors Errnm resulting when using Eq. (63) to estimate the

natural frequencies, relative to those obtained numerically, for annular plates with b ¼ 0:1 and 0:5,
(b)

b=0.1 b=0.5

. Variation of the lowest four natural frequencies (x01, x11, x21, x31) for two annular plates with the thermal load p for the three
(i) s ¼ 2, (ii) s ¼ 1, and (iii) s ¼ 0:5. The numbers 1–6 in part (b) denote the resonances x01 � x11, x01 � x21, x11 � x21,

x31, x11 � x31, and x21 � x31, respectively.
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respectively. In both cases, the value of s ¼ 0:5. Again, we note that the approximate solution of Eq. (63)

exhibits similar trends to those discussed for the circular plate in the previous section.
9. Modal interactions

We mentioned earlier that, as p varies, internal resonances involving different modes may be activated.

This, in turn, could lead to complex and sometimes undesirable vibrations if the plate is under an external

excitation, as it may be the case in many applications having such a component. If follows from Figs. 5 and
7 that three-to-one and combination internal resonances may be activated among modes having the same

number n of nodal diameters. Moreover, the results in Fig. 5 are qualitatively true for values of s 6¼ 1.

In addition, one-to-one internal resonances between modes having the same number m of nodal circles

may be activated in annular plates. For example, in Fig. 14a, we present the variation of the natural fre-

quencies x01, x11, x21, and x31 with p when b ¼ 0:1 for (i) s ¼ 2, (ii) s ¼ 1, and (iii) s ¼ 0:5. As p is in-

creased, we find that the one-to-one internal resonances x01 � x11 and x01 � x21 may be activated, as

shown for s ¼ 2. Setting s ¼ 1, we obtain a similar behavior, but with the two internal resonances shifted to

the right in p. In such cases, vibrations of the plate could consist of both standing and traveling waves.
Reducing s to 0.5, we find that a third one-to-one internal resonance x11 � x21 may also be activated.

We increase the ratio of the inner radius to the outer radius to b ¼ 0:5 and present once more in Fig. 14b

the variation of x01, x11, x21, and x31 with p for (i) s ¼ 2, (ii) s ¼ 1, and (iii) s ¼ 0:5. In this case, the natural

frequencies are closer to each other, resulting in six different combinations of one-to-one internal reso-

nances: x01 � x11, x01 � x21, x11 � x21, x01 � x31, x11 � x31, and x21 � x31. They are numbered 1–6,

respectively, in Fig. 14b and the corresponding values of p are presented in Table 5. We find that the

resonances are clustered relatively close to each other, such that two or more of them may be activated

simultaneously, possibly resulting in three- or four-mode interactions.
10. Summary

We investigated the mode shapes and natural frequencies of circular and annular plates under axi-

symmetric steady-state thermal loads. We formulated the problem by using a linearized version of the von

K�arm�an plate theory and the heat conduction equation. We neglected the influence of the thermoelastic

coupling term and solved the heat conduction equation for the steady-state temperature distribution. Then,

we solved the compatibility equation for the stress function and substituted the result into the equation of

motion to obtain the eigenvalue problem.
Table 5

Values of p for which the one-to-one internal resonances 1–6 in Fig. 14b may occur

# Resonance p

s ¼ 2 s ¼ 1 s ¼ 0:5

1 x01 � x11 72.3 99.0 122.4

2 x01 � x21 76.4 105.1 129.3

3 x11 � x21 77.8 107.0 131.7

4 x01 � x31 83.4 114.6 140.9

5 x11 � x31 84.8 116.5 143.3

6 x21 � x31 88.9 122.1 150.2
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We presented and analyzed two cases where closed-form solutions exist: an annular plate under a zero

temperature gradient and a circular plate. Furthermore, we used a shooting method to numerically solve

and analyze cases of nonzero temperature gradients. We studied the influence of the thermal load p, the
ratio s of the absolute temperatures at the boundaries, and the ratio b of the inner radius to the outer radius
on the natural frequencies of the system. We found that, as the thermal load is increased, the natural

frequencies monotonously decrease to zero, causing the plate to buckle. When the temperature at the inner

boundary is greater than that at the outer boundary (i.e., s > 1), a lower thermal load will cause buckling,

and vice versa. Furthermore, with an increase in the ratio b, the natural frequencies increase and larger

thermal loads are needed to cause buckling.

For values of p � xnm, we used the method of strained parameters to obtain approximate closed-form

expressions for the natural frequencies. We showed, by examples for both circular and annular plates, that

these approximations can yield very accurate results, especially for the higher natural frequencies for values
of p up to the lowest buckling level.

Varying the thermal load, we found that several types of internal resonances may be activated. For

example, in annular and circular plates, we found that three-to-one and combination internal resonances

may occur among modes having the same number n of nodal diameters. Arafat and Nayfeh (2003)

investigated the nonlinear responses of clamped–clamped thermally loaded annular plates in the presence of

a three-to-one internal resonance between the second and first axisymmetric modes (i.e., x02 � 3x01) when

the second mode is excited near primary resonance (i.e., X � x02). They used a combination of a numerical

shooting technique and the method of multiple scales to obtain approximate solutions and found that two-
mode periodic vibrations of the plate with a large component from the first mode occur, appearing as

isolated solutions ‘‘islands’’ in the force- and frequency-response curves. Moreover, two-mode quasiperi-

odic vibrations of the plate can develop through Hopf bifurcations.

Furthermore, in annular plates, modes with the same number m of nodal circles exhibit frequency

crossovers, and hence one-to-one internal resonances. For larger values of b, these crossovers occur closer
to each other, and hence simultaneous one-to-one internal resonances might be activated. An interesting

consequence of the frequency crossovers is that the first buckling shape of an annular plate may not be in

the form of the mode shape of the lowest natural frequency in the absence of heat. For example, if x01 is the
lowest natural frequency when p ¼ 0, the plate may first buckle at p ¼ p�11 (and not p�01) in the shape of the

asymmetric mode /11ðrÞeih due to the frequency crossing between x01 and x11, as evident from Fig. 14a for

the case of s ¼ 2. In other cases, the first buckling shape may be in the form of the mode /21e
2ih, as

demonstrated by Fig. 14a for the cases of s ¼ 1 and 0:5, and the mode /31e
3ih, as demonstrated by Fig. 14b

for all three cases.
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